

1,3,2-Diazaborinium-Verbindungen – neue Heteroaren-Kationen des Bors

Norbert Kuhn*, Annette Kuhn, Jörg Lewandowski und Martin Speis

Fachbereich 6 (Chemie) der Universität-Gesamthochschule Duisburg, Lotharstraße 1, W-4100 Duisburg 1

Eingegangen am 21. März 1991

Key Words: 1,3,2-Diazaborinium compounds / Calculations, AM1

1,3,2-Diazaborinium Compounds - New Cationic Boron Heteroarenes

The diazaborinium cation **9** is obtained by the reaction of the vinamidine boron chelate **8** with Et_2O-BF_3 . The cyclic aluminium compound **13** forms with the dichloroboranes $RBCl_2$

(R = Cl, Et, Ph) the cations **15**, **16a**, and **16b**. AM1 calculations demonstrate the π interaction of the boron with the nitrogen atoms as well as with the fluoro substituent.

Die isostere Verwandtschaft der Fragmente C_2 und BN findet ihren Niederschlag in zahlreichen strukturchemischen Parallelen, welche die Chemie der Bor-Stickstoff-Verbindungen in mancher Hinsicht zu einer anorganischen Variante der organischen Chemie werden lassen. Die hierdurch geförderte Annäherung der Denkweisen hat vor allem im Bereich der Bor-haltigen Heterocyclen¹⁾ einen wertvollen Beitrag zur Überwindung der historisch bedingten Trennung der Fachgebiete geleistet.

Die gemäß dem Isosteriekonzept den Pyridinen bzw. ihren Benzo-annelierten Derivaten verwandten Dihydrodiazaborine bilden durch die Möglichkeit der Stellungsisomerie (1-3) ein prinzipiell inhaltsreiches Kapitel; Schwierigkeiten bei der Synthese haben jedoch nur für 1^{2-6} sowie die strukturell verwandten Derivate von 4 (X = $O^{7,8}$, CR₂⁹) einen nennenswerten Bearbeitungsstand erbracht; die Existenz der Stellungsisomeren $2^{8,10}$ und 3^{11} ist demgegenüber nur durch wenige Beispiele belegt.

Der strukturellen Parallele zwischen den Pyridinen und den "Borazo-Pyridinen" (Dihydrodiazaborinen) entspricht die formale Analogie zwischen Pyridinium-Salzen und den kationischen Dihydro-1*H*-diazaborinium-Verbindungen **5** und 6^{12} . Die scheinbar einfache Synthese durch Alkylierung der entsprechenden Diazaborine ist jedoch nur für den Verbindungstyp **5** realisiert worden^{2,4)}. Der ionische Aufbau der durch elektrophilen Angriff an das Sauerstoff-Atom in **4** (X = O) erhaltenen Produkte⁸⁾ ist, wie auch ein Strukturvorschlag in der Patentliteratur¹³⁾, ungesichert. Wir konnten kürzlich zeigen, daß durch direkte Umsetzung von BF₃ mit Vinamidinen 7 das Tetrahydrodiazaborin-System 8 zugänglich ist¹⁴⁾. Das aus der reaktiven Bor-Halogen-Bindung in 8 erwachsene präparative Potential¹⁵⁾ wollten wir zur Synthese und Charakterisierung von Dihydro-1*H*-1,3,2-diazaborinium-Verbindungen einsetzen.

Synthese und Eigenschaften des 2-Fluor-2,3-dihydro-1,3,4,6tetramethyl-1*H*-1,3,2-diazaborinium-Kations 9

Trotz der hohen Stabilität der Bor-Fluor-Bindung und der Lewis-Acidität kationischer Borzentren trigonal-planarer Geometrie ist die Fluorid-Abstraktion aus Amin-Boranen bereits erfolgreich zur Synthese von Borenium-Ionen¹⁶⁾ herangezogen worden. Tatsächlich reagiert auch das Diazaborinin 8 in unpolaren Lösungsmitteln mit Bortrifluorid-Diethylether zum Dihydro-1H-1,3,2-diazaborinium-Ion 9, das sich als Tetrafluoroborat in guten Ausbeuten isolieren läßt. Die Leichtigkeit der Fluorid-Übertragung überrascht hier, da als Konkurrent des Kations 9 nicht das BF3-Molekül, sondern vielmehr sein Diethylether-Addukt fungiert. Zusätzlich zur nachfolgend besprochenen Stabilisierung des Kations infolge seiner formalen Hückel-Aromatizität leistet hier vermutlich die Gitterenergie des Tetrafluoroborat-Salzes sowie die hiermit zusammenhängende geringe Löslichkeit im Reaktionsmedium einen nennenswerten Beitrag. Dies wird deutlich sichtbar am Ausbleiben der Bildungsreaktion in Dichlormethan sowie der langsamen, aber stetigen Zersetzung des Salzes 9 zur Ausgangsverbindung 8 in

Chem, Ber. 124 (1991) 2197-2201 © VCH Verlagsgesellschaft mbH, D-6940 Weinheim, 1991 0009-2940/91/1010-2197 \$ 3.50+.25/0

Lösung; diese hat die Gewinnung von zur Strukturanalyse brauchbaren Einkristallen bislang verhindert.

Ein Vergleich der NMR-Daten (vgl. Tab. 1) mit denen des Borinins 8 bestätigt den ionischen Aufbau von 9 in Lösung. Hier wird für das Kation 9 durchgängig eine Verschiebung der Signallage zu tiefem Feld beobachtet. Die Interpretation der besonders augenfälligen Verschiebungsdifferenz für 5-H im ¹H-NMR-Spektrum als Folge eines Ringstrom-Effekts in 9 ist naheliegend. Jedoch zeigt die Auswertung der Spektren von (acac) BF_2 und $\lceil (acac)_2 B \rceil^+$, daß die Entschirmung hier bereits von der Ionenladung bewirkt werden kann; das betrachtete Proton ist mit dem die positive Ladung hauptsächlich tragenden Borzentrum durch eine Heteroallyl-Brücke verbunden¹⁷⁾. Im ¹¹B-NMR-Spektrum zeigt die deutliche Verschiebungsdifferenz von 20 ppm den Wechsel der Koordinationszahl am Boratom an¹⁸; die vollständige Entfernung eines der Fluorsubstituenten kommt auch im Kopplungsmuster zum Ausdruck, dessen Dublett-Charakter die denkbare Struktur von 9 als Addukt $8 \cdot BF_3$ widerlegt.

Verbindungen des trigonal koordinierten Bors erreichen die Edelgaskonfiguration durch $(p \rightarrow p)_{\pi}$ -Bindungsverstärkung, soweit einer der Substituenten über nichtbindende Elektronenpaare am Donoratom verfügt. Für eine solche Wechselwirkung kommt in 9 neben den ringständigen Stickstoffatomen auch der Fluor-Substituent in Betracht. Zur Beurteilung der Beteiligung des exocyclischen Substituenten an diesem Prozeß ist der Austausch des Bor-ständigen Substituenten sinnvoll. Dieser läßt sich jedoch, wie am Beispiel der Methylgruppe ersichtlich, präparativ nicht auf dem direkten Weg über das "unsymmetrisch" substituierte Diazaborinin 11 und nachfolgende Fluorid-Abstraktion zu 12 realisieren; durch Umsetzung von 9 mit Methyllithium wurde hingegen immer das Dimethylboran 10 erhalten, das auch unmittelbar aus 8 zugänglich ist. Da der Aufbau zu 9 analoger Diazaborinium-Verbindungen durch entsprechende Umsetzung von 7 mit weiteren Haloboranen wie Bortrichlorid oder Organyldihaloboranen ebenfalls erfolglos blieb, haben wir ein neues Verfahren zur Synthese von 1,3,2-Diazaborinium-Verbindungen mit größerer Anwendungsbreite entwickelt.

Synthese von 1,3,2-Diazaborinium-Verbindungen durch Bor-Aluminium-Austausch

Der Austausch ringständiger Heteroatome hat vor allem zur Synthese sechsgliedriger Heterocyclen der Vb-Elemente¹⁹⁾ einen wertvollen Beitrag geliefert, ist jedoch auch zur Gewinnung Bor-haltiger Heterocyclen²⁰⁾ erfolgreich herangezogen worden. Die Übertragung dieses Syntheseprinzips auf den Aufbau von 1,3,2-Diazaborinium-Verbindungen erfordert eine Ausgangsverbindung mit vergleichsweise labiler Element-Stickstoff-Bindung, deren bei der Umsetzung mit einer Haloboran-Komponente freigesetztes Fragment zugleich als Halogenid-Akzeptor wirken sollte. Diesen Anforderungen wird der Baustein AlCl₂ in optimaler Weise gerecht.

Der Einbau des Fragments $AlCl_2$ in das Ringgerüst läßt sich analog zur Synthese der Borverbindung 8 durch Um-

setzung des Vinamidins 7 mit AlCl₃ in Gegenwart von Triethylamin problemlos realisieren. Das resultierende Diazaaluminin 13 weist im Vergleich mit 8 als Folge der wesentlich reaktionsfreudigeren Bindungen des IIIb-Elements eine erhöhte Labilität vor allem in Lösung auf. Die Signallage im ¹H-NMR-Spektrum ist gegenüber 8, vermutlich infolge der höheren Azidität des IIIb-Zentrums, zu tiefem Feld verschoben. Das ²⁷Al-NMR-Spektrum zeigt mit $\delta = 102.9$ (gegen $[Al(H_2O)_6]^{3+}$) die für tetraedrische Koordination charakteristische Verschiebung²¹⁾. Im Gegensatz zu 8 haben wir bei 13 keine Aromatisierung durch Halogenid-Abstraktion erreichen können. Das durch Umsetzung mit AlCl₃ erhältliche Addukt 14 zeigt in Dichlormethan keine ionische Dissoziation; auch die im ¹H-NMR-Spektrum für 5-H beobachtete Verschiebung von $\delta = 4.53$ weist 14 als Neutralverbindung aus. Dieser Befund ist in Einklang mit der gegenüber dem leichteren Gruppennachbarn deutlich geringeren Tendenz des Aluminiums zur Ausbildung der Koordinationszahl 3 in kondensierter Phase²²⁾.

Die Umsetzung von 13 mit BCl₃ führt hingegen, wie angestrebt, selbst unter schonenden Bedingungen zum Austausch des ringständigen IIIb-Elements unter Chlorid-Abstraktion. Das hierdurch in erstaunlich glatter Reaktion zugängliche Diazaborinium-Ion 15 weist in seinen Eigenschaften deutliche Parallelen zum Fluor-Analogen 9 auf, ist in Lösung jedoch von merklich höherer Lebensdauer. Dies führen wir in erster Linie auf die gegenüber F geringere Bereitschaft des Chlor-Substituenten zur Stabilisierung einer tetraedrischen Bindungsgeometrie am Borzentrum zurück. Der durch Umsetzung von 15 mit LiCl leicht realisierbare Austausch von AlCl₄ gegen das stärker nucleophile Cl⁻ führt jedoch offensichtlich zu einer verstärkten Wechselwirkung des Borzentrums mit dem Gegenion; dies wird an der deutlichen Konzentrationsabhängigkeit der chemischen Verschiebung im ¹¹B-NMR-Spektrum von 17 sichtbar, die vermutlich als Folge eines Gleichgewichts der Strukturen 17a und 17b im Bereich von δ ca. 15 bis 30 variiert. Die geringe Löslichkeit von 17 in unpolaren Lösungsmitteln wie Benzol spricht für einen ionischen Aufbau des festen Zustands. Analog zur Synthese von 15 sind durch Umsetzung von 13 mit Organyldichlorboranen die Kationen 16 (R =Et, Ph) zugänglich.

Die zuvor angesprochene Frage nach dem Beitrag des exocyclischen Substituenten zur Oktett-Stabilisierung des Borzentrums in Diazaborinium-Ionen läßt sich nun anhand ihrer NMR-Daten (vgl. Tab. 1) diskutieren. Ein Vergleich der chemischen Verschiebungen δ^{11} B der Kationen 9, 15, 16a und 16b zeigt eine sehr gute Übereinstimmung mit den Werten der Diaminoborane $(Me_2N)_2BX^{23}$ (X = F, Cl, Ph, Et; $\delta = 21.8, 27.9, 32.4, 34.0$). Dies zeigt zunächst, daß der formale Charakter der Heteroaromatizität sich auch im Falle des Bors auf die Verschiebungswerte nicht nennenswert auswirkt und der Chelat-Ligand hierzu einen der Summe beider Me₂N-Substituenten vergleichbaren Beitrag leistet. Der ausführlich diskutierte Einfluß von π -Wechselwirkungen auf die chemische Verschiebung¹⁸⁾ signalisiert, wie auch für (Me₂N)₂BX²³⁾, einen solchen Beitrag für den Fluor-Substituenten, nicht jedoch für die Phenyl-Gruppe. Dies ist andeutungsweise auch an der Lage des 5-H-Signals im ¹H-NMR-Spektrum sichtbar, wenn wir die starke Entschirmung als Folge der positiven Ladung am Borzentrum akzeptieren. Erwartungsgemäß sind die Auswirkungen der unterschiedlichen π -Wechselwirkung des exocyclischen Substituenten in den ¹³C-NMR-Spektren nicht signifikant.

AM1-Berechnungen

Zur Frage der π -Elektronenverteilung in den Titelkationen gibt die NMR-Spektroskopie mit der Sonderstellung

Tab. 1. NMR-Daten der Verbindungen 9 und 12-19^{a)}

Verb.	δ ¹ H	δ ¹¹ Β
9	2.43 4,6-Me; 3.43 N-Me; 4.90 5-H	23.05 (d) ^{b)}
12	0.17 B-Me; 1.80 4,6-Me; 2.72 N-Me; 4.30 5-H	2.2
13 ^{C)}	1.27 4,6-Me; 2.61 N-Me; 4.42 5-H	-
14 ^{d)}	2.61 4,6-Me; 3.56 N-Me; 4.53 5-H	-
15	2.65 4,6-Me; 3.70 N-Me; 6.83 5-H	32.16
16a	1.02-1.60 (m) Et; 2.58 4,6-Me; 3.61 N-Me; 6.63 5-H	36.78
1 6 b	2.63 4,6-Me; 3.41 N-Me; 6.76 5-H; 7.50 (m) Ph	34.98
17 ^{e)}	2.41 4,6-Me; 3.47 N-Me; 6.11 5-H	22.25
18 ^{f)}	1.63 4,6-Me; 5.16 5-H	1.09
19 ^{f)}	1.03, 1.60 4,6-Me; 2.60 N-Me; 4.57 5-H	2.40 (t) ^{g)}

Verb. $\delta^{13}C$

9	21.15 4,6-Me; 33.52 N-Me; 109.71 C-5; 171.41 C-4,6
15	22.90 4,6-Me; 38.54 N-Me; 113.88 C-5; 171.09 C-4,6
1 6 a	7.33 BCH ₂ ; 22.48, 22.51 4,6-Me, C-Me; 37.55 N-Me; 113.29 C- ² 5; 169.52 C-4,6
16b	22.56 4,6-Me; 39.44 N-Me; 114.39 C-5; 129.51, 130.68, 132.02 Ph; 170.04 C-4,6
17 ^{e)}	21.75 4,6-Me; 34.91 N-Me; 106.57 C-5; 169.70 C-4,6

^{a)} In CD₂Cl₂, $-^{b)} J({}^{19}F,{}^{11}B) = 12.3$ Hz. $-^{c)} \delta^{27}Al = 102.9$ [bez. auf Al(H₂O) $_{6}^{3+}$]. $-^{d)} \delta^{27}Al$ ca. 100 (br). $-^{e)}$ Ca. 10proz. Lösung. $-^{b}$ In C₆D₆. $-^{g)} J({}^{19}F,{}^{11}B) = 17.0$ Hz.

von 9 einen ersten Hinweis (s. o.). In Ermangelung experimenteller Strukturdaten haben wir deshalb AM1-Berechnungen²⁴⁾ zur weiteren Beleuchtung dieses Problems durchgeführt.

Die in Tab. 2 angegebenen Daten weisen die Kationen 9, 15 und 16 übereinstimmend als planar bezüglich des sechsgliedrigen Ringsystems aus. Die ringständigen Bindungswinkel weichen nur geringfügig von 120° ab. Die Bindungsabstände liegen im Erwartungsbereich und zeigen lediglich für 9 bezüglich der Bor-Stickstoff-Bindung eine merkliche Aufweitung gegenüber den anderen Kationen.

Ein deutlicheres Bild ergibt die Betrachtung der errechneten Bindungsordnungen. Wie erwartet, ergibt die Berechnung einen deutlichen Abfall der π -Bindungsordnung für B-X in der Folge X = F > Cl > R; dem entspricht eine gegenläufige Entwicklung für die B-N-Bindung in der Reihe $X = F < Cl \simeq R$, während die sonstigen ringständigen Bindungen hiervon weitgehend unbeeinflußt sind. Dieser Befund läßt sich interpretieren als Konkurrenz der an das Borzentrum gebundenen Atome um dessen π -Elektronenlücke,

Tab. 2. AM1-Ergebnisse der Verbindungen 9, 15 und 16

Verbindungen	9	15	16a	16b	16c
Stan dard bildungs- enth alpie [kcal/mol]	42 .9 7	91.56	103.89	144.73	135.88
Dipolmoment [Debye]	2.010	3.487	1.313	4.861	1.011
Ionisations- potential [eV]	13.825	13 .9 07	13.633	12.702	13.652
Bindungslängen [pm]					
B2-N3	146.8	144.7	145.6	144.9	145.0
N3-C4	136.7	137.2	136.9	136.9	136.9
C4-C5	140.6	140.6	140.6	140.7	140.7
B2-X	131.6	173.0	156.6	155.3	154.5
N3-C	144.8	145.0	144.9	144.8	144.8
C4-C	149.2	149.2	149.3	149.2	149.2
С5-Н	110.2	110.2	110.1	110.1	110.1
Bindungswinkel [⁰]					
N1-B2-N3	118.6	119.5	117.9	118.5	118.4
B2-N3-C4	119.3	119.3	120.3	120.0	120.1
N3-C4-C5	120.4	120.2	120.0	120.0	120.0
C4-C5-C6	121.9	121.6	121.5	121.5	121.5
N3-B2-X	120.7	120.3	121.1	120.7	120.8
C4-N3-C	120.2	118.8	119.4	119.2	119.3
N3-C4-C	120.5	120.9	121.6	121.0	121.0
Bindungsordnung (π-Bindungsordnung)					
B2-N3	0.994 (0.192)	1.053 (0.237)	1.031 (0.233)	1.043 (0.239)	1.041 (0.238)
N3-C4	1.278 (0.373)	1.271 (0.366)	1.286 (0.378)	1.285 (0.377)	1 .283 (0.376)
C4-C5	1.370 (0.427)	1.376 (0.432)	1.373 (0.430)	1.374 (0.430)	1.374 (0.432)
B2-X	1.177 (0.316)	1.074 (0.166)	0.949 (0.043)	0.934 (0.040)	0.947 (0.048)
N3-C	0.917 (0.036)	0.916 (0.036)	0.924 (0.035)	0.923 (0.036)	0.923 (0.036)
C4-C	0 .996 (0.058)	0.996 (0.058)	0.995 (0.055)	0.996 (0.056)	0.996 (0.057)
С5-Н	0.928	0.928	0.930	0.930	0.930

von der die Bindungsverhältnisse im Ringfragment C₃N₂ erstaunlich unberührt bleiben. Angesichts der etwa in $B(C_6H_5)_3^{25}$ ermittelten Bedeutung der $(p \rightarrow p)_{\pi}$ -Wechselwirkung zur Beschreibung der Bindungsverhältnisse überrascht in 16b die geringe π -Bindungsordnung der B-C-Bindung, die mit der für 16a berechneten annähernd zusammenfällt. Ein Vergleich mit der Vinyl-Verbindung 16c zeigt, daß als Begründung die Hückel-Aromatizität des Substituenten in 16b nicht greift. In 16b wie auch in 16c wird ein Energieminimum für die orthogonale Anordnung der Ebene des heterocyclischen Rings und der durch die Kohlenstoff-Atome gebildeten Ebene des Substituenten erreicht. Als weiteres Resultat ergibt die Berechnung für sämtliche Kationen ein Energieminimum für die Orientierung benachbarter Methylgruppen in anti-Stellung bezüglich der in der Ringebene liegenden Wasserstoff-Atome (vgl. Abb. 1); jedoch haben wir nur für 9 eine signifikante Differenz (1.54 kcal/mol) zur Konformation mit um 180° um die exocyclische N-C-Bindung rotierten Methylgruppen errechnet. Dies sehen wir als Folge der in der abgebildeten Konformation möglichen CHF-Brücke an; der hier errechnete Abstand (dH - F 2.368 Å)liegt im Erwartungsbereich des Bindungstyps.

Abb. 1. Geometrie dcs Kations von 9 (X = F) gemäß AM1-Rechnung

Zusammenfassende Betrachtung

Die beachtliche Bereitschaft tetraedrischer Borzentren im Dihydrodiazaborin-System zur Halogenid-Abspaltung ermöglicht die einfache Synthese von Dihydro-1*H*-diazaborinium-Kationen. Die elektronische Absättigung des trigonalen Borzentrums ist hierbei durch $(p \rightarrow p)_{\pi}$ -Wechselwirkungen sowohl mit dem exocyclischen Substituenten wie auch mit den ringständigen Stickstoffatomen möglich. AM1-Berechnungen der Kationen 9, 15 und 16 zeigen für den exocyclischen Fluor-Substituenten hierbei eine Präferenz gegenüber den ringständigen Liganden, während in den anderen Kationen die π -Wechselwirkung des Bors mit den Stickstoff-Atomen dominiert [vgl. hierzu jüngste Untersuchungen der Substanzklasse $(Me_2N)_2BR^{26}]$. Obwohl hinsichtlich der Bindungssituation des Bors in den Titelverbindungen keine wesentliche Abweichung vom Aufbau herkömmlicher Diaminoborane ersichtlich ist, steht der Befund doch in Einklang mit der Vorstellung von einem aromatischen System im Sinne der Hückel-Auffassung, auch wenn, wie bei allen Heteroarenen, die klassische Termfolge der benzoiden Aromaten durch den Einbau der Heteroelemente gestört sein dürfte. Die besondere Rolle der B – N-Bindung, auf die in der Einleitung hingewiesen wurde, kommt zum Ausdruck im gegenüber 8 abweichenden Reaktionsverhalten der hierzu analogen Sauerstoff-Verbindungen 18 und 19, von denen wir keine 9 entsprechenden Heteroaren-Kationen erhalten haben²⁷⁾.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Förderung dieser Arbeit.

Experimenteller Teil

Sämtliche Arbeiten wurden in gereinigten Lösungsmitteln unter Argon durchgeführt. N-Methyl-4-(methylimino)-2-penten-2-amin (7)²⁸, 2,2-Difluor-1,3,4,6-tetramethyl-3-aza-1-azonia-2-borata-4,6cyclohexadien (8)¹⁴, EtBCl₂²⁹ und PhBCl₂³⁰ wurden nach Literaturangaben erhalten. (C₅H₇O₂)BF₂ (18)³¹ wurde analog zu 19 (s. u) aus (Acetylacetonato)trimethylsilan und BF₃-Et₂O in 95proz. Ausb. hergestellt. – NMR: Bruker WM 300 (¹³C-NMR), Bruker WP 80 (¹¹B-, ¹⁹F-NMR), Jeol PMX 60 SI (¹H-NMR). – MS: Varian MAT 311.

2-Fluor-2,3-dihydro-1,3,4,6-tetramethyl-1H-1,3,2-diazaboriniumtetrafluoroborat (9): Eine Lösung von 0.4 g (2.3 mmol) 8 in 10 ml Benzol wird mit 0.29 ml (2.3 mmol) Et_2O-BF_3 in 5 ml Benzol versetzt und 5 min gerührt. Der resultierende Niederschlag wird abfiltriert, mehrfach mit Benzol gewaschen und i. Vak. getrocknet. Ausb. 0.38 g (68%), farblose Kristalle. – NMR: Tab. 1.

 $C_7H_{13}B_2F_5N_2$ (241.7) Ber. C 34.78 H 5.43 N 11.59 Gef. C 34.44 H 5.20 N 11.39

1,2,2,3,4,6-Hexamethyl-3-aza-1-azonia-2-borata-4,6-cyclohexadien (10): Eine Lösung von 0.4 g (2.3 mmol) 8 in 10 ml Diethylether wird mit 2.88 ml (4.6 mmol) Methyllithium in Diethylether versetzt und 30 min zum Sieden erhitzt. Die filtrierte Lösung wird mit 10 ml *n*-Pentan versetzt und auf -78 °C abgekühlt. Ausb. nach Sublimation i. Vak. 0.15 g (39%), farblose Kristalle. – NMR: Tab. 1. – MS (70 eV): m/z (%) = 166 (1) [M⁺], 151 (100) [M⁺ – CH₃], 136 (4) [M⁺ – 2 CH₃] und weitere Bruchstücke.

 $C_9H_{19}BN_2$ (166.1) Ber. C 65.07 H 11.55 N 16.87 Gef. C 64.86 H 11.50 N 16.34

2,2-Dichlor-1,3,4,6-tetramethyl-3-aza-1-azonia-2-alumina-4,6-cyclohexadien (13): Eine Suspension von 1.89 g (14.2 mmol) AlCl₃ in 10 ml Toluol wird tropfenweise mit einer Lösung von 1.79 g (14.2 mmol) 7 und 1.98 g (14.2 mmol) Et₃N in 10 ml Toluol versetzt. Dann wird 12 h bei Raumtemp. gerührt, das Filtrat der Reaktionsmischung zur Trockne eingeengt und i. Vak. bei 200°C Badtemp. sublimiert. Ausb. 1.60 g (50%), farblose Kristalle. – NMR: Tab. 1. – MS (70 eV): m/z (%) = 223 (100) [M⁺], 188 (83) [M⁺ – Cl], 158 (83) [M⁺ – Cl, 2 CH₃], 124 (59) [M⁺ – 2 Cl, 2 CH₃] und weitere Bruchstücke.

 $\begin{array}{r} C_7 H_{13} AlCl_2 N_2 \ (223.1) \\ \text{Gef. C } 37.68 \ H \ 5.89 \ N \ 12.56 \\ \text{Gef. C } 37.44 \ H \ 5.92 \ N \ 12.41 \end{array}$

2,2-Dichlor-1,3,4,6-tetramethyl-3-aza-1-azonia-2-alumina-4,6-cyclohexadien \cdot AlCl₃ (14): Eine Lösung von 0.39 g (1.7 mmol) 13 in 10 ml Toluol wird mit 0.23 g (1.7 mmol) AlCl₃ versetzt und 30 min bei Raumtemp. gerührt. Die filtrierte Lösung wird i. Vak. zur C

Trockne eingeengt. Ausb. nach Umkristallisation aus Toluol/n-Pentan 0.50 g (82%), farbloser Feststoff. - NMR: Tab. 1.

₇ H ₁₃ Al ₂ Cl ₅ N ₂ (356.4)	Ber.	C 23.59	H 3.68	N 7.86
	Gef.	C 23.22	H 3.31	N 7.68

2-Chlor-2,3-dihydro-1,3,4,6-tetramethyl-1H-1,3,2-diazaboriniumtetrachloroaluminat (15): Eine Lösung von 0.45 g (2.0 mmol) 13 in 10 ml Toluol wird bei - 60°C mit 0.19 ml (2.0 mmol) BCl₃ versetzt. Nach 1 h wird die leichtere Phase abpipettiert. Das verbliebene Öl wird mehrfach mit jeweils 10 ml Diethylether bis zur eintretenden Kristallisation gerührt. Der hierbei resultierende Feststoff wird aus Dichlormethan/Diethylether umkristallisiert. Ausb. 0.59 g (87%), farbloser Feststoff. - NMR: Tab. 1.

C₇H₁₃AlBCl₅N₂ (340.3) Ber. C 24.71 H 3.86 N 8.23 Gef. C 24.29 H 3.91 N 8.11

2-Ethyl-2,3-dihydro-1,3,4,6-tetramethyl-1H-1,3,2-diazaboriniumtetrachloroaluminat (16a): 1.41 g (6.3 mmol) 13, 0.70 g (6.3 mmol) Dichlorethylboran; Versuchsdurchführung wie bei 15. Ausb. 1.85 g (88%), farbloser Feststoff. - NMR: Tab. 1.

C₉H₁₈AlBCl₄N₂ (333.9) Ber. C 32.61 H 5.44 N 8.39 Gef. C 32.30 H 5.28 N 8.17

2,3-Dihydro-1,3,4,6-tetramethyl-2-phenyl-1H-1,3,2-diazaboriniumtetrachloroaluminat (16b): 0.76 g (3.4 mmol) 13, 0.54 g (3.4 mmol) Dichlorphenylboran; Versuchsdurchführung wie bei 15. Ausb. 1.15 g (89%), farblose Kristalle. - NMR: Tab. 1.

C₁₃H₁₈AlBCl₄N₂ (381.9) Ber. C 40.88 H 4.76 N 7.34 Gef. C 40.54 H 4.61 N 7.09

2-Chlor-2,3-dihydro-1,3,4,6-tetramethyl-1H-1,3,2-diazaboriniumchlorid (17): Eine Lösung von 0.65 g (1.9 mmol) 15 in 10 ml Tetrahydrofuran wird mit 0.10 g (2.36 mmol) wasserfreiem LiCl versetzt und 2 h bei Raumtemp. gerührt. Die filtrierte Lösung wird zur Trockne eingeengt und der Rückstand in 5 ml Dichlormethan aufgenommen. Der nach erneutem Einengen und Zugabe von 20 ml Diethylether resultierende Feststoff wird abfiltriert und aus Dichlormethan/Diethylether umkristallisiert. Ausb. 0.24 g (61%), farbloser Feststoff. - NMR: Tab. 1.

C₇H₁₃BCl₂N₂ (206.9) Ber. C 40.63 H 6.35 N 13.54 Gef. C 40.27 H 6.29 N 13.15

2,2-Difluor-3,4,6-trimethyl-1-oxonia-3-aza-2-borata-4,6-cyclohexadien (19): Eine Lösung von 1.9 g (10.3 mmol) 4-(Methylimino)-O-(trimethylsilyl)-2-penten-2-ol und 1.29 ml (10.3 mmol) BF₃-Et₂O in 10 ml Diethylether wird 12 h zum Sieden erhitzt. Die filtrierte Lösung wird mit 10 ml n-Pentan versetzt und auf -78°C abgekühlt. Ausb. nach Umkristallisation aus Diethylether 1.28 g (77%), farbloser Feststoff. - NMR: Tab. 1.

> C₆H₁₀BF₂NO (161.0) Ber. C 44.76 H 6.27 N 8.70 Gef. C 44.44 H 6.25 N 8.32

CAS-Registry-Nummern

7: 126329-25-7 / 8 (Chelat): 125979-13-7 / 8 [B(III)]: 134419-95-7 / 9: 134419-91-3 / 10 (Chelat): 134565-10-9 / 10 [B(III)]: 134419-94-6 / 13: 134565-11-0 / 14: 134565-12-1 / 15: 134565-14-3 / 16a: 134565-16-5 / 16b: 134592-92-0 / 16c: 134419-93-5 / 17: 134565-17-6 / 19: 65750-62-1 / BCl₃: 10294-34-5 / EtBCl₂: 1739-53-3 / PhBCl₂: 873-51-8 / 4-(Methylimino)-O-(trimethylsilyl)-2-penten-2ol: 134419-92-4

- ⁴⁾ S. Gronowitz, A. Maltesson, Acta Chem. Scand., Ser. B, 31 (1977) 765.
- ⁵⁾ B. Roques, D. Florentin, J.-P. Juhasz, Compt. Rend. Acad. Sci. Ser. 270 (1970) 1898; D. Florentin, B.-P. Roques, J.-M. Metzger, J.-P. Colin, Bull. Soc. Chim. France 1974 2620; D. Florentin, M.-
- C. Fournie-Zaluski, B. P. Roques, J. Chem. Res. (S) 1977 158. ⁶ B. W. Müller, Helv. Chim. Acta 61 (1978) 325; M. A. Graßberger, Liebigs Ann. Chem. 1985, 683; J. T. Sharp, C. E. D. Skinner, Tetrahedron Lett. **27** (1986) 869
- ⁷⁾ S. S. Chissick, M. J. S. Dewar, P. M. Maitlis, J. Am. Chem. Soc. 81 (1959) 6329; 83 (1961) 2708.
- ⁸⁾ H. L. Yale, F. H. Bergeim, F. A. Sowinski, J. Bernstein, J. Fried, J. Am. Chem. Soc. 84 (1962) 688; H. L. Yale, J. Heterocycl. Chem. 8 (1971) 193
- 9 V. A. Dorokhov, O. G. Boldyreva, Izv. Akad. Nauk SSSR., Ser. Khim. 1986, 2089
- ¹⁰⁾ A. Dornow, D. Wille, Chem. Ber. 98 (1965) 1505; A. Meller, W. Maringgele, G. Maresch, Monatsh. Chem. 105 (1974) 637; W. Maringgele, A. Meller, Z. Anorg. Allg. Chem. 433 (1977) 94; A. Meller, W. Maringgele, H. Fetzer, Chem. Ber. 113 (1980) 1950.
- ¹¹⁾ V. A. Dorokhov, O. G. Boldyreva, M. N. Bochkareva, B. M. Mikhailov, Izv. Adad. Nauk SSSR, Ser. Khim. 1979, 174
- ¹²⁾ Zu kationischen Verbindungen des Bors vgl. P. Koelle, H. Nöth, Chem. Rev. 85 (1985) 399.
- ¹³⁾ D. S. Daniel, D. W. Heseltine, Fr. Demande 2,019,482 (Cl. C 07d, C 09b, G 03g) [Chem. Abstr. 75 (1971) 119199k].
- 14) N. Kuhn, A. Kuhn, M. Speis, D. Bläser, R. Boese, Chem. Ber. 123 (1990) 1301
- ¹⁵⁾ Die seit langer Zeit bekannten Diorganobor-Verbindungen des Typs 8 weisen stabile B-C-Bindungen auf und sind zur Synthese von Diazaborinium-Verbindungen ungeeignet; vgl. hierzu B. M. Mikhailov, Pure Appl. Chem. **49** (1977) 749.
- ¹⁶⁾ H. Nöth, B. Rasthofer, S. Weber, Z. Naturforsch., Teil B, 39 (1984) 1058.
- ¹⁷⁾ J.-P. Costes, G. Cros, J.-P. Laurent, Synth. Inorg. Metal-Org. Chem. 11 (1981) 383.
- ¹⁸⁾ H. Nöth, B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy of Boron Compounds, Springer, Berlin 1978.
- ¹⁹⁾ Vgl. z. B. G. Märkl, Angew. Chem. 78 (1966) 907; A. J. Ashe, III, J. Am. Chem. Soc. 93 (1971) 3293, 6690; A. J. Ashe, M. D. Gordon, ibid. 94 (1972) 7596.
- ²⁰⁾ Vgl. z. B. J. J. Eisch, N. K. Hora, S. Kozima, J. Am. Chem. Soc. 91 (1969) 4575; A. J. Ashe, P. Shu, ibid. 93 (1971) 1804; G. E. Herberich, E. Bauer, J. Hengesbach, K. Kölle, G. Huttner, H. Lorenz, Chem. Ber. 110 (1977) 760; G. E. Herberich, B. Buner, B. Hessner, W. Oschmann, J. Organomet. Chem. 195 (1980) 253.
- ²¹⁾ J. F. Hinton, R. W. Briggs in *NMR and the Periodic Table* (R. K. Harris, B. E. Mann, Eds.), Academic Press, London 1978.
- ²²⁾ Verbindungen dieses Typs sind in festem Zustand nur in be-Verter Zahl nachgewiesen worden; vel hierzu J. K. Ruff, J. Am. Chem. Soc. 83 (1961) 1798, 2836; J. Pump, E. G. Rochow, U. Wannagat, Angew. Chem. 75 (1963) 374; G. M. Sheldrick, W. S. Sheldrick, J. Chem. Soc. (A) 1969, 2279; K. Wade, B. K. Wartt B. Saridi Lucar M. J. Chem. 9 (1970) 2444; H. B. Wyatt, R. Snaith, Inorg. Nucl. Chem. Lett. 9 (1970) 311; H. Bürger, J. Cichon, U. Goetze, U. Wannagat, H. J. Wismar, J. Organomet. Chem. 33 (1971) 1; J. J. Jerins, J. M. Hahn, A. F. M. Maqsucher Rahman, O. Mols, W. H. Ilsley, J. P. Oliver, Organometallics 5 (1986) 1812; A. P. Shreve, R. Multhoupt, W. Fultz, J. Calabrese, W. Robbins, S. D. Ittel, ibid. 7 (1988) 409; K. M. Waggoner, H. Hope, P. P. Power, Angew. Chem. 100 (1988) 1765; Angew. Chem. Int. Ed. Engl. 27 (1988) 1699.
- ²³⁾ H. Nöth, H. Vahrenkamp, *Chem. Ber.* 99 (1966) 1049.
 ²⁴⁾ M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Steward, *J. Am. Chem. Soc.* 107 (1985) 3902; MOPAC (Version 5.0) QCPE 455
- ²⁵⁾ Übersicht: J. D. Odom in Comprehensive Organometallic Chemistry (G. Wilkinson, Ed.), Bd. 1, Pergamon Press, Oxford 1982.
- ²⁶⁾ N. Niederprüm, R. Boese, G. Schmid, Z. Naturforsch., Teil B, 46 (1991) 84. 27)
- Vgl. hierzu C. K. Narula, H. Nöth, Z. Naturforsch., Teil B, 38 (1983) 1161, und dort zitierte Literatur.
- ²⁸⁾ S. G. McGeachin, Can. J. Chem. 46 (1968) 1903.
- ²⁹⁾ H. Nöth, W. Storch, Synth. React. Inorg. Metal-Org. Chem. 1 (1971) 197
- ³⁰⁾ H. Nöth, H. Vahrenkamp, J. Organomet. Chem. 11 (1968) 399.
- ³¹⁾ Gmelin Handbuch der Anorganischen Chemie, Bd. 34, Borverbindungen, Teil 9, Springer, Berlin-Heidelberg-New York 1976.

¹⁾ Übersicht: I. Ander in Comprehensive Heterocyclic Chemistry (A. R. Katritzky, C. W. Rees, Eds.), Bd. 1, Pergamon Press, Oxford 1984.

²⁾ M. J. S. Dewar, R. C. Dougherty, J. Am. Chem. Soc. 86 (1964)

 ³¹ S. Gronowitz, A. Bugge, Acta Chem. Scand. 19 (1965) 1271; S. Gronowitz, C. Roos, *ibid., Ser. B*, 29 (1975) 990; S. Gronowitz, A. Maltesson, *ibid., Ser. B*, 29 (1975) 461; S. Gronowitz, C. Roos, S. Gronowitz, G. Gronowitz, C. Roos, S. Gronowitz, G. E. Sandberg, S. Clementi, J. Heterocycl. Chem. 14 (1977) 893, und dort zitierte Literatur.